{ "id": "1602.05037", "version": "v1", "published": "2016-02-16T14:55:04.000Z", "updated": "2016-02-16T14:55:04.000Z", "title": "Classifying $τ$-tilting modules over the Auslander algebra of $K[x]/(x^n)$", "authors": [ "Osamu Iyama", "Xiaojin Zhang" ], "categories": [ "math.RT", "math.RA" ], "abstract": "We build a bijection between the set $\\sttilt\\Lambda$ of isomorphism classes of basic support $\\tau$-tilting modules over the Auslander algebra $\\Lambda$ of $K[x]/(x^n)$ and the symmetric group $\\mathfrak{S}_{n+1}$, which is an anti-isomorphism of partially ordered sets with respect to the generation order on $\\sttilt\\Lambda$ and the left order on $\\mathfrak{S}_{n+1}$. This restricts to the bijection between the set $\\tilt\\Lambda$ of isomorphism classes of basic tilting $\\Lambda$-modules and the symmetric group $\\mathfrak{S}_n$ due to Br\\\"{u}stle, Hille, Ringel and R\\\"{o}hrle. Regarding the preprojective algebra $\\Gamma$ of Dynkin type $A_n$ as a factor algebra of $\\Lambda$, we show that the tensor functor $-\\otimes_{\\Lambda}\\Gamma$ induces a bijection between $\\sttilt\\Lambda\\to\\sttilt\\Gamma$. This recover Mizuno's bijection $\\mathfrak{S}_{n+1}\\to\\sttilt\\Gamma$ for type $A_n$.", "revisions": [ { "version": "v1", "updated": "2016-02-16T14:55:04.000Z" } ], "analyses": { "subjects": [ "16G10", "16E10" ], "keywords": [ "auslander algebra", "tilting modules", "symmetric group", "isomorphism classes", "classifying" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160205037I" } } }