{ "id": "1602.04944", "version": "v1", "published": "2016-02-16T08:50:39.000Z", "updated": "2016-02-16T08:50:39.000Z", "title": "On a multiplicative version of Mumford's theorem", "authors": [ "Robert Laterveer" ], "comment": "7 pages, to appear in Abh. Math. Semin. Univ. Hamburg. Comments still very welcome !", "doi": "10.1007/s12188-016-0121-x", "categories": [ "math.AG" ], "abstract": "A theorem of Esnault, Srinivas and Viehweg asserts that if the Chow group of 0-cycles of a smooth complete complex variety decomposes, then the top-degree coherent cohomology group decomposes similarly. In this note, we prove a similar statement for Chow groups of arbitrary codimension, provided the variety satisfies the Lefschetz standard conjecture.", "revisions": [ { "version": "v1", "updated": "2016-02-16T08:50:39.000Z" } ], "analyses": { "subjects": [ "14C15", "14C25", "14C30" ], "keywords": [ "mumfords theorem", "multiplicative version", "top-degree coherent cohomology group decomposes", "smooth complete complex variety decomposes", "chow group" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer" }, "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160204944L" } } }