{ "id": "1602.04675", "version": "v1", "published": "2016-02-15T13:54:03.000Z", "updated": "2016-02-15T13:54:03.000Z", "title": "Intervals of Antichains and Their Decompositions", "authors": [ "Patrick De Causmaecker", "Stefan De Wannemacker", "Jay Yellen" ], "comment": "31pages", "categories": [ "math.CO" ], "abstract": "An antichain of subsets is a set of subsets such that no subset in the antichain is a proper subset of any other subset in the antichain. The Dedekind number counts the total number of antichains of subsets of an n-element set. This paper investigates the interval structure of the lattice of antichains. Several partitioning theorems and counting formulas for the size of intervals are derived.", "revisions": [ { "version": "v1", "updated": "2016-02-15T13:54:03.000Z" } ], "analyses": { "subjects": [ "06A07", "11B30", "05C30", "F.2.2", "B.2.4", "E.1" ], "keywords": [ "decompositions", "dedekind number counts", "interval structure", "proper subset", "total number" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160204675D" } } }