{ "id": "1602.04585", "version": "v1", "published": "2016-02-15T08:04:26.000Z", "updated": "2016-02-15T08:04:26.000Z", "title": "Extremal function for Moser-Trudinger type Inequality with Logarithmic weight", "authors": [ "Prosenjit Roy" ], "comment": "To appear in \"Nonlinear Analysis- TMA\"", "doi": "10.1016/j.na.2016.01.024", "categories": [ "math.AP" ], "abstract": "On the space of weighted radial Sobolev space, the following generalization of Moser-Trudinger type inequality was established by Calanchi and Ruf in dimension 2 : If $\\beta \\in [0,1)$ and $w_0(x) = |\\log |x||^\\beta $ then $$ \\sup_{\\int_B |\\grad u|^2w_0 \\leq 1 , u \\in H_{0,rad}^1(w_0,B)} \\int_B e^{\\alpha u^{\\frac{2}{1-\\beta}}} dx < \\infty,$$ if and only if $\\alpha \\leq \\alpha_\\beta = 2\\left[2\\pi (1-\\beta) \\right]^{\\frac{1}{1-\\beta}}.$ We prove the existence of an extremal function for the above inequality for the critical case when $\\alpha = \\alpha_\\beta$ thereby generalizing the result of Carleson-Chang who proved the case when $\\beta =0$.", "revisions": [ { "version": "v1", "updated": "2016-02-15T08:04:26.000Z" } ], "analyses": { "keywords": [ "moser-trudinger type inequality", "extremal function", "logarithmic weight", "weighted radial sobolev space", "carleson-chang" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160204585R" } } }