{ "id": "1602.04317", "version": "v1", "published": "2016-02-13T11:20:26.000Z", "updated": "2016-02-13T11:20:26.000Z", "title": "On the regularity of primes in arithmetic progressions", "authors": [ "Christian Elsholtz", "Niclas Technau", "Robert Tichy" ], "categories": [ "math.NT" ], "abstract": "We prove that for a positive integer $k$ the primes in certain kinds of intervals can not distribute too 'uniformly' among the reduced residue classes modulo $k$. Hereby, we prove a generalization of a conjecture of Recaman and establish our results in a much more general situation, in particular for prime ideals in number fields.", "revisions": [ { "version": "v1", "updated": "2016-02-13T11:20:26.000Z" } ], "analyses": { "keywords": [ "arithmetic progressions", "regularity", "reduced residue classes modulo", "general situation", "prime ideals" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }