{ "id": "1602.04314", "version": "v1", "published": "2016-02-13T10:48:57.000Z", "updated": "2016-02-13T10:48:57.000Z", "title": "Simple transitive 2-representations for some 2-subcategories of Soergel bimodules", "authors": [ "Marco Mackaay", "Volodymyr Mazorchuk" ], "categories": [ "math.RT", "math.CT" ], "abstract": "We classify simple transitive $2$-representations of certain $2$-sub\\-ca\\-te\\-go\\-ri\\-es of the $2$-category of Soergel bimodules over the coinvariant algebra in Coxeter types $B_2$ and $I_2(5)$. In the $I_2(5)$ case it turns out that simple transitive $2$-representations are exhausted by cell $2$-representations. In the $B_2$ case we show that, apart from cell $2$-representations, there is a unique, up to equivalence, additional simple transitive $2$-representation and we give an explicit construction of this $2$-representation.", "revisions": [ { "version": "v1", "updated": "2016-02-13T10:48:57.000Z" } ], "analyses": { "keywords": [ "soergel bimodules", "representation", "coinvariant algebra", "explicit construction", "coxeter types" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160204314M" } } }