{ "id": "1602.04241", "version": "v1", "published": "2016-01-26T16:54:51.000Z", "updated": "2016-01-26T16:54:51.000Z", "title": "The Ubiquity of Sidon Sets That Are Not $I_0$", "authors": [ "Kathryn E. Hare", "L. Thomas Ramsey" ], "categories": [ "math.CA", "math.FA" ], "abstract": "We prove that every infinite, discrete abelian group admits a pair of $I_0$ sets whose union is not $I_0$. In particular, this implies that every such group contains a Sidon set that is not $I_{0}$.", "revisions": [ { "version": "v1", "updated": "2016-01-26T16:54:51.000Z" } ], "analyses": { "subjects": [ "43A46" ], "keywords": [ "sidon set", "discrete abelian group admits", "group contains" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160204241H" } } }