{ "id": "1602.04148", "version": "v1", "published": "2016-02-12T18:28:40.000Z", "updated": "2016-02-12T18:28:40.000Z", "title": "Multiple solutions for a Neumann system involving subquadratic nonlinearities", "authors": [ "Alexandru Kristály", "Dušan Repovš" ], "journal": "Nonlinear Anal. 74:6 (2011), 2127-2132", "doi": "10.1016/j.na.2010.11.018", "categories": [ "math.AP" ], "abstract": "In this paper we consider the model semilinear Neumann system $$\\left\\{ \\begin{array}{lll} -\\Delta u+a(x)u=\\lambda c(x) F_u(u,v)& {\\rm in} & \\Omega,\\\\ -\\Delta v+b(x)v=\\lambda c(x) F_v(u,v)& {\\rm in} & \\Omega,\\\\ \\frac{\\partial u}{\\partial \\nu}=\\frac{\\partial v}{\\partial \\nu}=0 & {\\rm on} & \\partial\\Omega, \\end{array}\\right.$$ where $\\Omega\\subset \\mathbb R^N$ is a smooth open bounded domain, $\\nu$ denotes the outward unit normal to $\\partial \\Omega$, $\\lambda\\geq 0$ is a parameter, $a,b,c\\in L_+^\\infty(\\Omega)\\setminus\\{0\\},$ and $F\\in C^1(\\mathbb{R}^2,\\mathbb{R})\\setminus\\{0\\}$ is a nonnegative function which is subquadratic at infinity. Two nearby numbers are determined in explicit forms, $\\underline \\lambda$ and $\\overline \\lambda$ with $ 0<\\underline\\lambda\\leq \\overline \\lambda$, such that for every $0\\leq \\lambda<\\underline \\lambda$, system $(N_\\lambda)$ has only the trivial pair of solution, while for every $\\lambda>\\overline \\lambda$, system $(N_\\lambda)$ has at least two distinct nonzero pairs of solutions.", "revisions": [ { "version": "v1", "updated": "2016-02-12T18:28:40.000Z" } ], "analyses": { "keywords": [ "multiple solutions", "subquadratic nonlinearities", "model semilinear neumann system", "smooth open bounded domain", "distinct nonzero pairs" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160204148K" } } }