{ "id": "1602.03712", "version": "v1", "published": "2016-02-11T12:58:07.000Z", "updated": "2016-02-11T12:58:07.000Z", "title": "Stabilization via Homogenization", "authors": [ "Marcus Waurick" ], "comment": "8 pages", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "In this short note we treat a 1+1-dimensional system of changing type. On different spatial domains the system is of hyperbolic and elliptic type, that is, formally, $\\partial_t^2 u_n-\\partial_x^2 u_n = \\partial_t f$ and $u_n-\\partial_x^2 u_n= f$ on the respective spatial domains $\\bigcup_{j\\in \\{1,\\ldots,n\\}} \\big(\\frac{j-1}{n},\\frac{2j-1}{2n}\\big)$ and $\\bigcup_{j\\in \\{1,\\ldots,n\\}} \\big(\\frac{2j-1}{n},\\frac{j}{n}\\big)$. We show that $(u_n)_n$ converges weakly to $u$, which solves the exponentially stable limit equation $\\partial_t^2 u +2\\partial_t u + u -\\partial_x^2 u = f+\\partial_t f$ on $[0,1]$. If the elliptic equation is replaced by a parabolic one, the limit equation is \\emph{not} exponentially stable.", "revisions": [ { "version": "v1", "updated": "2016-02-11T12:58:07.000Z" } ], "analyses": { "subjects": [ "35M10", "35B35", "35B27" ], "keywords": [ "stabilization", "homogenization", "elliptic equation", "short note", "elliptic type" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160203712W" } } }