{ "id": "1602.03610", "version": "v1", "published": "2016-02-11T03:08:46.000Z", "updated": "2016-02-11T03:08:46.000Z", "title": "Upper bounds on the first eigenvalue for the $p$-Laplacian", "authors": [ "Guangyue Huang", "Zhi Li" ], "comment": "All comments are welcome", "categories": [ "math.DG" ], "abstract": "In this paper, we establish gradient estimates for positive solutions to the following equation with respect to the $p$-Laplacian $$\\Delta_{p}u=-\\lambda |u|^{p-2}u$$ with $p>1$ on a given complete Riemannian manifold. Consequently, we derive upper bound estimates of the first nontrivial eigenvalue of the $p$-Laplacian.", "revisions": [ { "version": "v1", "updated": "2016-02-11T03:08:46.000Z" } ], "analyses": { "keywords": [ "first eigenvalue", "derive upper bound estimates", "first nontrivial eigenvalue", "complete riemannian manifold", "establish gradient estimates" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160203610H" } } }