{ "id": "1602.03583", "version": "v1", "published": "2016-02-11T00:32:51.000Z", "updated": "2016-02-11T00:32:51.000Z", "title": "Divisor problem in arithmetic progressions modulo a prime power", "authors": [ "Kui Liu", "Igor E. Shparlinski", "Tianping Zhang" ], "categories": [ "math.NT" ], "abstract": "We obtain an asymptotic formula for the average value of the divisor function over the integers $n \\le x$ in an arithmetic progression $n \\equiv a \\pmod q$, where $q=p^k$ for a prime $p\\ge 3$ and a sufficiently large integer $k$. In particular, we break the classical barrier $q \\le x^{2/3}$ for such formulas, and generalise a recent result of R.~Khan (2015), making it uniform in $k$.", "revisions": [ { "version": "v1", "updated": "2016-02-11T00:32:51.000Z" } ], "analyses": { "keywords": [ "arithmetic progressions modulo", "prime power", "divisor problem", "divisor function", "average value" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160203583L" } } }