{ "id": "1602.03198", "version": "v1", "published": "2016-02-09T21:29:43.000Z", "updated": "2016-02-09T21:29:43.000Z", "title": "Harmonic-Number Summation Identities, Symmetric Functions, and Multiple Zeta Values", "authors": [ "Michael E. Hoffman" ], "comment": "29 pp", "categories": [ "math.NT" ], "abstract": "We show how infinite series of a certain type involving generalized harmonic numbers can be computed using a knowledge of symmetric functions and multiple zeta values. In particular, we prove and generalize some identities recently conjectured by J. Choi, and give several more families of identities of a similar nature.", "revisions": [ { "version": "v1", "updated": "2016-02-09T21:29:43.000Z" } ], "analyses": { "subjects": [ "11M32", "05A05", "11B85" ], "keywords": [ "multiple zeta values", "harmonic-number summation identities", "symmetric functions", "infinite series", "generalized harmonic numbers" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160203198H" } } }