{ "id": "1602.03112", "version": "v1", "published": "2016-02-09T18:31:36.000Z", "updated": "2016-02-09T18:31:36.000Z", "title": "Existence of multi-bump solutions for a class of elliptic problems involving the biharmonic operator", "authors": [ "Claudianor O. Alves", "Alânnio B. Nóbrega" ], "categories": [ "math.AP" ], "abstract": "Using variational methods, we establish existence of multi-bump solutions for the following class of problems $$ \\left\\{ \\begin{array}{l} \\Delta^2 u +(\\lambda V(x)+1)u = f(u), \\quad \\mbox{in} \\quad \\mathbb{R}^{N}, u \\in H^{2}(\\mathbb{R}^{N}), \\end{array} \\right. $$ where $N \\geq 1$, $\\Delta^2$ is the biharmonic operator, $f$ is a continuous function with subcritical growth and $V : \\mathbb{R}^N \\rightarrow \\mathbb{R}$ is a continuous function verifying some conditions.", "revisions": [ { "version": "v1", "updated": "2016-02-09T18:31:36.000Z" } ], "analyses": { "keywords": [ "multi-bump solutions", "biharmonic operator", "elliptic problems", "continuous function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160203112A" } } }