{ "id": "1602.03107", "version": "v1", "published": "2016-02-09T18:10:36.000Z", "updated": "2016-02-09T18:10:36.000Z", "title": "Range of (1,2) random walk in random environment", "authors": [ "Hua-Ming Wang" ], "comment": "14 pages", "categories": [ "math.PR" ], "abstract": "Consider $(1,2)$ random walk in random environment $\\{X_n\\}_{n\\ge0}.$ In each step, the walk jumps at most a distance $2$ to the right or a distance $1$ to the left. For the walk transient to the right, it is proved that almost surely $\\lim_{x\\rightarrow\\infty}\\frac{\\#\\{X_n:\\ 0\\le X_n\\le x,\\ n\\ge0\\}}{x}=\\theta$ for some $0<\\theta<1.$ The result shows that the range of the walk covers only a linear proportion of the lattice of the positive half line. For the nearest neighbor random walk in random or non-random environment, this phenomenon could not appear in any circumstance.", "revisions": [ { "version": "v1", "updated": "2016-02-09T18:10:36.000Z" } ], "analyses": { "subjects": [ "60K37", "60K05" ], "keywords": [ "nearest neighbor random walk", "walk covers", "non-random environment", "walk jumps", "positive half line" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160203107W" } } }