{ "id": "1602.02853", "version": "v1", "published": "2016-02-09T04:00:47.000Z", "updated": "2016-02-09T04:00:47.000Z", "title": "Corrigendum to \"On the equivariant $K$-theory of the nilpotent cone in the general linear group,\" published in Represent. Theory 8 (2004)", "authors": [ "Pramod N. Achar" ], "comment": "5 pages", "categories": [ "math.RT" ], "abstract": "In the paper [P. Achar, \"On the equivariant $K$-theory of the nilpotent cone in the general linear group,\" Represent. Theory 8 (2004), 180-211], the author gave a combinatorial algorithm for computing the Lusztig-Vogan bijection for $GL(n,\\mathbb{C})$. However, that paper failed to mention one easy case that may sometimes arise, making the description of the algorithm incomplete. This note fills in that gap.", "revisions": [ { "version": "v1", "updated": "2016-02-09T04:00:47.000Z" } ], "analyses": { "keywords": [ "general linear group", "nilpotent cone", "equivariant", "corrigendum", "author gave" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }