{ "id": "1602.02593", "version": "v1", "published": "2016-02-05T10:14:11.000Z", "updated": "2016-02-05T10:14:11.000Z", "title": "Blow up property for viscoelastic evolution equations on manifolds with conical degeneration", "authors": [ "Mohsen Alimohammady", "Morteza Koozehgar Kalleji" ], "categories": [ "math.AP" ], "abstract": "This paper is concerned with the study of the nonlinear viscoelastic evolution equation with strong damping and source terms, described by \\[u_{tt} - \\Delta_{\\mathbb{B}}u + \\int_{0}^{t}g(t-\\tau)\\Delta_{\\mathbb{B}}u(\\tau)d\\tau + f(x)u_{t}|u_{t}|^{m-2} = h(x)|u|^{p-2}u , \\hspace{1 cm} x\\in int\\mathbb{B}, t > 0,\\] where $\\mathbb{B}$ is a stretched manifold. First, we prove the solutions of problem {1.1} in cone Sobolev space $\\mathcal{H}^{1,\\frac{n}{2}}_{2,0}(\\mathbb{B}),$ admit a blow up in finite time for $p > m$ and positive initial energy. Then, we construct a lower bound for obtained blow up time under appropriate assumptions on data.", "revisions": [ { "version": "v1", "updated": "2016-02-05T10:14:11.000Z" } ], "analyses": { "subjects": [ "35B44" ], "keywords": [ "conical degeneration", "nonlinear viscoelastic evolution equation", "cone sobolev space", "finite time", "source terms" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160202593A" } } }