{ "id": "1602.02584", "version": "v1", "published": "2016-02-08T14:34:03.000Z", "updated": "2016-02-08T14:34:03.000Z", "title": "$C_{n}$-moves and the difference of Jones polynomials for links", "authors": [ "Ryo Nikkuni" ], "comment": "13 pages, 11 figures", "categories": [ "math.GT" ], "abstract": "The Jones polynomial $V_{L}(t)$ for an oriented link $L$ is a one-variable Laurent polynomial link invariant discovered by Jones. For any integer $n\\ge 3$, we show that: (1) the difference of Jones polynomials for two oriented links which are $C_{n}$-equivalent is divisible by $\\left(t-1\\right)^{n}\\left(t^{2}+t+1\\right)\\left(t^{2}+1\\right)$, and (2) there exists a pair of two oriented knots which are $C_{n}$-equivalent such that the difference of the Jones polynomials for them equals $\\left(t-1\\right)^{n}\\left(t^{2}+t+1\\right)\\left(t^{2}+1\\right)$.", "revisions": [ { "version": "v1", "updated": "2016-02-08T14:34:03.000Z" } ], "analyses": { "subjects": [ "57M25" ], "keywords": [ "jones polynomial", "difference", "one-variable laurent polynomial link invariant", "oriented link", "equivalent" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160202584N" } } }