{ "id": "1602.02461", "version": "v1", "published": "2016-02-08T04:06:45.000Z", "updated": "2016-02-08T04:06:45.000Z", "title": "Strengthening theorems of Dirac and Erdős on disjoint cycles", "authors": [ "Henry A. Kierstead", "Alexandr V. Kostochka", "Andrew McConvey" ], "comment": "13 pages", "categories": [ "math.CO" ], "abstract": "Let $k \\ge 3$ be an integer, $H_{k}(G)$ be the set of vertices of degree at least $2k$ in a graph $G$, and $L_{k}(G)$ be the set of vertices of degree at most $2k-2$ in $G$. In 1963, Dirac and Erd\\H{o}s proved that $G$ contains $k$ (vertex-)disjoint cycles whenever $|H_{k}(G)| - |L_{k}(G)| \\ge k^{2} + 2k - 4$. The main result of this paper is that for $k \\ge 2$, every graph $G$ with $|V(G)| \\ge 3k$ containing at most $t$ disjoint triangles and with $|H_{k}(G)| - |L_{k}(G)| \\ge 2k + t$ contains $k$ disjoint cycles. This yields that if $k \\ge 2$ and $|H_{k}(G)| - |L_{k}(G)| \\ge 3k$, then $G$ contains $k$ disjoint cycles. This generalizes the Corr\\'{a}di-Hajnal Theorem, which states that every graph $G$ with $H_{k}(G) = V(G)$ and $|H_{k}(G)| \\ge 3k$ contains $k$ disjoint cycles.", "revisions": [ { "version": "v1", "updated": "2016-02-08T04:06:45.000Z" } ], "analyses": { "subjects": [ "05C35", "05C70", "05C10" ], "keywords": [ "disjoint cycles", "strengthening theorems", "disjoint triangles", "main result", "generalizes" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160202461K" } } }