{ "id": "1602.02291", "version": "v1", "published": "2016-02-06T18:52:42.000Z", "updated": "2016-02-06T18:52:42.000Z", "title": "Discrepancy and Eigenvalues of Cayley Graphs", "authors": [ "Yoshiharu Kohayakawa", "Vojtěch Rödl", "Mathias Schacht" ], "comment": "Dedicated to the memory of Professor Miroslav Fiedler", "categories": [ "math.CO" ], "abstract": "We consider quasirandom properties for Cayley graphs of finite abelian groups. We show that having uniform edge-distribution (i.e., small discrepancy) and having large eigenvalue gap are equivalent properties for such Cayley graphs, even if they are sparse. This positively answers a question of Chung and Graham [\"Sparse quasi-random graphs\", Combinatorica 22 (2002), no. 2, 217-244] for the particular case of Cayley graphs of abelian groups, while in general the answer is negative.", "revisions": [ { "version": "v1", "updated": "2016-02-06T18:52:42.000Z" } ], "analyses": { "subjects": [ "05C50", "05C80" ], "keywords": [ "cayley graphs", "sparse quasi-random graphs", "finite abelian groups", "large eigenvalue gap", "quasirandom properties" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160202291K" } } }