{ "id": "1602.02234", "version": "v1", "published": "2016-02-06T10:06:57.000Z", "updated": "2016-02-06T10:06:57.000Z", "title": "Categorical resolutions of a class of derived categories", "authors": [ "Pu Zhang" ], "comment": "arXiv admin note: text overlap with arXiv:1410.2414", "categories": [ "math.RT" ], "abstract": "Using the relative derived categories, we prove that if an Artin algebra $A$ has a module $T$ with ${\\rm inj.dim}T<\\infty$ such that $^\\perp T$ is finite, then the bounded derived category $D^b({\\rm mod}A)$ admits a categorical resolution; and that for CM-finite Gorenstein algebra, such a categorical resolution is weakly crepant.", "revisions": [ { "version": "v1", "updated": "2016-02-06T10:06:57.000Z" } ], "analyses": { "subjects": [ "18E30", "14E15", "16G10", "16G50", "18G25" ], "keywords": [ "categorical resolution", "cm-finite gorenstein algebra", "artin algebra", "relative derived categories", "bounded derived category" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }