{ "id": "1602.02168", "version": "v1", "published": "2016-02-05T21:23:52.000Z", "updated": "2016-02-05T21:23:52.000Z", "title": "Dimensions of the irreducible representations of the symmetric and alternating group", "authors": [ "Korneel Debaene" ], "comment": "24 pages", "categories": [ "math.CO" ], "abstract": "We establish the existence of an irreducible representation of $A_n$ whose dimension does not occur as the dimension of an irreducible representation of $S_n$, and vice versa. This proves a conjecture by Tong-Viet. The main ingredient in the proof is a result on large prime factors in short intervals.", "revisions": [ { "version": "v1", "updated": "2016-02-05T21:23:52.000Z" } ], "analyses": { "subjects": [ "20C30", "20C40" ], "keywords": [ "irreducible representation", "alternating group", "large prime factors", "short intervals", "main ingredient" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }