{ "id": "1602.02116", "version": "v1", "published": "2016-02-05T18:27:16.000Z", "updated": "2016-02-05T18:27:16.000Z", "title": "A note on the subadditivity of Syzygies", "authors": [ "Sabine El Khoury", "Hema Srinivasan" ], "comment": "4 pages", "categories": [ "math.AC" ], "abstract": "Let $R=S/I$ be a graded algebra with $t_i$ and $T_i$ being the minimal and maximal shifts in the minimal $S$ resolution of $R$ at degree $i$. In this paper we prove that $t_n\\leq t_1+T_{n-1}$, for all $n$ and as a consequence, we show that for Gorenstein algebras of codimension $h$, the subadditivity of maximal shifts $T_i$ in the minimal resolution holds for $i \\le h-1$, i.e, we show that $T_i \\leq T_a+T_{i-a}$ for $i\\le h-1$.", "revisions": [ { "version": "v1", "updated": "2016-02-05T18:27:16.000Z" } ], "analyses": { "subjects": [ "13D02" ], "keywords": [ "subadditivity", "maximal shifts", "minimal resolution holds", "gorenstein algebras" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160202116E" } } }