{ "id": "1602.01429", "version": "v1", "published": "2016-02-03T19:46:17.000Z", "updated": "2016-02-03T19:46:17.000Z", "title": "On Closed Manifolds with Harmonic Weyl", "authors": [ "Hung Tran" ], "comment": "27 pages", "categories": [ "math.DG" ], "abstract": "We derive point-wise and integral rigidity/gap results for a closed manifold with harmonic Weyl curvature in any dimension. In particular, there is a generalization of Tachibana's theorem for non-negative curvature operator. The key ingredients are new Bochner-Weitzenb\\\"ock-Lichnerowicz type formulas for the Weyl tensor, which are generalizations of identities in dimension four.", "revisions": [ { "version": "v1", "updated": "2016-02-03T19:46:17.000Z" } ], "analyses": { "subjects": [ "53C21", "53C24" ], "keywords": [ "closed manifold", "integral rigidity/gap results", "harmonic weyl curvature", "weyl tensor", "generalization" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160201429T" } } }