{ "id": "1602.01071", "version": "v1", "published": "2016-02-02T20:26:01.000Z", "updated": "2016-02-02T20:26:01.000Z", "title": "Asymmetric critical $p$-Laplacian problems", "authors": [ "Kanishka Perera", "Yang Yang", "Zhitao Zhang" ], "comment": "arXiv admin note: text overlap with arXiv:1406.6242, arXiv:1411.2198", "categories": [ "math.AP" ], "abstract": "We obtain nontrivial solutions for two types of critical $p$-Laplacian problems with asymmetric nonlinearities in a smooth bounded domain in ${\\mathbb R}^N,\\, N \\ge 2$. For $p < N$, we consider an asymmetric problem involving the critical Sobolev exponent $p^\\ast = Np/(N - p)$. In the borderline case $p = N$, we consider an asymmetric critical exponential nonlinearity of the Trudinger-Moser type. In the absence of a suitable direct sum decomposition, we use a linking theorem based on the ${\\mathbb Z}_2$-cohomological index to obtain our solutions.", "revisions": [ { "version": "v1", "updated": "2016-02-02T20:26:01.000Z" } ], "analyses": { "subjects": [ "35B33", "35J92", "35J20" ], "keywords": [ "laplacian problems", "suitable direct sum decomposition", "asymmetric critical exponential nonlinearity", "smooth bounded domain", "asymmetric problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160201071P" } } }