{ "id": "1602.00065", "version": "v1", "published": "2016-01-30T02:54:25.000Z", "updated": "2016-01-30T02:54:25.000Z", "title": "Limit theorems for critical first-passage percolation on the triangular lattice", "authors": [ "Chang-Long Yao" ], "comment": "17 pages, 1 figure", "categories": [ "math.PR" ], "abstract": "Consider (independent) first-passage percolation on the sites of the triangular lattice $\\mathbb{T}$. Denote the passage time of the site $v$ in $\\mathbb{T}$ by $t(v)$, and assume that $P(t(v)=0)=P(t(v)=1)=1/2$. Denote by $b_{0,n}$ the passage time from 0 to the halfplane $\\{v\\in\\mathbb{T}:\\mbox{Re}(v)\\geq n\\}$, and by $T(0,nu)$ the passage time from 0 to the nearest site to $nu$, where $|u|=1$. We prove that as $n\\rightarrow\\infty$, $b_{0,n}/\\log n\\rightarrow 1/(2\\sqrt{3}\\pi)$ a.s., $E[b_{0,n}]/\\log n\\rightarrow 1/(2\\sqrt{3}\\pi)$ and Var$[b_{0,n}]/\\log n\\rightarrow 2/(3\\sqrt{3}\\pi)-1/(2\\pi^2)$; $T(0,nu)/\\log n\\rightarrow 1/(\\sqrt{3}\\pi)$ in probability but not a.s., $E[T(0,nu)]/\\log n\\rightarrow 1/(\\sqrt{3}\\pi)$ and Var$[T(0,nu)]/\\log n\\rightarrow 4/(3\\sqrt{3}\\pi)-1/\\pi^2$. This answers a question of Kesten and Zhang (1997) and improves our previous work (2014). From this result, we derive explicit form of the central limit theorem for $b_{0,n}$ and $T(0,nu)$. A key ingredient for the proof is the moment generating function of the conformal radii for conformal loop ensemble CLE$_6$, given by Schramm, Sheffield and Wilson (2009).", "revisions": [ { "version": "v1", "updated": "2016-01-30T02:54:25.000Z" } ], "analyses": { "subjects": [ "60K35", "82B43" ], "keywords": [ "critical first-passage percolation", "triangular lattice", "passage time", "conformal loop ensemble cle", "central limit theorem" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160200065Y" } } }