{ "id": "1601.08168", "version": "v1", "published": "2016-01-29T16:04:53.000Z", "updated": "2016-01-29T16:04:53.000Z", "title": "Lower-Vietoris-type Topologies on Hyperspaces", "authors": [ "Elza Ivanova-Dimova" ], "comment": "14 pages", "categories": [ "math.GN" ], "abstract": "We introduce a new lower-Vietoris-type hypertopology in a way similar to that with which a new upper-Vietoris-type hypertopology was introduced in G. Dimov and D. Vakarelov, \"On Scott consequence systems\", Fundamenta Informaticae, 33 (1998), 43-70. (it was called there {\\em Tychonoff-type hypertopology}). We study this new hypertopology and, in particular, we generalize many results from E. Cuchillo-Ibanez, M. A. Moron and F. R. Ruiz del Portal, \"Lower semifinite topology in hyperspaces\", Topology Proceedings, 17 (1992), 29-39. As a corollary, we get that for every continuous map $f:X\\longrightarrow X$, where $X$ is a continuum, there exist a subcontinuum $K$ of $X$ such that $f(K)=K.$", "revisions": [ { "version": "v1", "updated": "2016-01-29T16:04:53.000Z" } ], "analyses": { "subjects": [ "54B20", "54H25", "54F15", "54C05" ], "keywords": [ "lower-vietoris-type topologies", "hyperspaces", "scott consequence systems", "ruiz del portal", "lower semifinite topology" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160108168I" } } }