{ "id": "1601.07824", "version": "v1", "published": "2016-01-28T16:42:54.000Z", "updated": "2016-01-28T16:42:54.000Z", "title": "The strong tree property and weak square", "authors": [ "Yair Hayut", "Spencer Unger" ], "categories": [ "math.LO" ], "abstract": "We show that it is consistent, relative to $\\omega$ many supercompact cardinals, that the super tree property holds at $\\aleph_n$ for all $2 \\leq n < \\omega$ but there are weak square and a very good scale at $\\aleph_{\\omega}$.", "revisions": [ { "version": "v1", "updated": "2016-01-28T16:42:54.000Z" } ], "analyses": { "subjects": [ "03E55", "03E05", "03E35" ], "keywords": [ "strong tree property", "weak square", "super tree property holds", "supercompact cardinals", "consistent" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160107824H" } } }