{ "id": "1601.06698", "version": "v1", "published": "2016-01-25T18:01:27.000Z", "updated": "2016-01-25T18:01:27.000Z", "title": "A lower bound for $K^2_S$", "authors": [ "Vincenzo Di Gennaro", "Davide Franco" ], "comment": "12 pages, Dedicated to Philippe Ellia on his sixtieth birthday", "categories": [ "math.AG" ], "abstract": "Let $(S,\\mathcal L)$ be a smooth, irreducible, projective, complex surface, polarized by a very ample line bundle $\\mathcal L$ of degree $d > 35$. In this paper we prove that $K^2_S\\geq -d(d-6)$. The bound is sharp, and $K^2_S=-d(d-6)$ if and only if $d$ is even, the linear system $|H^0(S,\\mathcal L)|$ embeds $S$ in a smooth rational normal scroll $T\\subset \\mathbb P^5$ of dimension $3$, and here, as a divisor, $S$ is linearly equivalent to $\\frac{d}{2}Q$, where $Q$ is a quadric on $T$.", "revisions": [ { "version": "v1", "updated": "2016-01-25T18:01:27.000Z" } ], "analyses": { "subjects": [ "14J99", "14M20", "14N15", "51N35" ], "keywords": [ "lower bound", "smooth rational normal scroll", "ample line bundle", "complex surface", "linear system" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }