{ "id": "1601.06655", "version": "v1", "published": "2016-01-25T16:18:04.000Z", "updated": "2016-01-25T16:18:04.000Z", "title": "Torsion classes generated by silting modules", "authors": [ "Simion Breaz", "Jan Žemlička" ], "comment": "Preliminary version; comments are welcome", "categories": [ "math.RT", "math.RA" ], "abstract": "We study the classes of modules which are generated by a silting module. In the case of either hereditary or perfect rings it is proved that these are exactly the torsion $\\mathcal{T}$ such that the regular module has a special $\\mathcal{T}$-preenvelope. In particular every torsion enveloping class in $\\textrm{Mod-} R$ are of the form $\\mathrm{Gen}(T)$ for a minimal silting module $T$. For the dual case we obtain for general rings that the covering torsion-free classes of modules are exactly the classes of the form $\\mathrm{Cogen}(T)$, where $T$ is a cosilting module.", "revisions": [ { "version": "v1", "updated": "2016-01-25T16:18:04.000Z" } ], "analyses": { "keywords": [ "torsion classes", "covering torsion-free classes", "general rings", "perfect rings", "dual case" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160106655B" } } }