{ "id": "1601.06489", "version": "v1", "published": "2016-01-25T06:34:07.000Z", "updated": "2016-01-25T06:34:07.000Z", "title": "Compact subspace of products of linearly ordered spaces and co-Namioka spaces", "authors": [ "Volodymyr Mykhaylyuk" ], "journal": "Mat. Bull. Shevchenko Scien.Soc. 10 (2013), 159-162", "categories": [ "math.GN" ], "abstract": "It is shown that for any Baire space $X$, linearly ordered compact spaces $Y_1,\\dots, Y_n$, compact space $Y\\subseteq Y_1\\times\\cdots \\times Y_n$ such that for every parallelepiped $W\\subseteq Y_1\\times\\cdots \\times Y_n$ the set $Y\\cap W$ is connected, and separately continuous mapping $f:X\\times Y\\to\\mathbb R$ there exists a dense in $X$ $G_\\delta$-set $A\\subseteq X$ such that $f$ is jointly continuous at every point of $A\\times Y$.", "revisions": [ { "version": "v1", "updated": "2016-01-25T06:34:07.000Z" } ], "analyses": { "keywords": [ "linearly ordered spaces", "co-namioka spaces", "compact subspace", "baire space" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160106489M" } } }