{ "id": "1601.06378", "version": "v1", "published": "2016-01-24T13:00:25.000Z", "updated": "2016-01-24T13:00:25.000Z", "title": "Ternary quadratic forms and linear combination of three triangular numbers", "authors": [ "Zhi-Hong Sun" ], "comment": "8 pages", "categories": [ "math.NT" ], "abstract": "Let $\\Bbb Z$ and $\\Bbb N$ be the set of integers and the set of positive integers, respectively. For $a,b,c,n\\in\\Bbb N$ let $N(a,b,c;n)$ be the number of representations of $n$ by $ax^2+by^2+cz^2$, and let $t(a,b,c;n)$ be the number of representations of $n$ by $ax(x-1)/2+by(y-1)/2+cz(z-1)/2 $ $(x,y,z\\in\\Bbb Z$). In this paper, by using Ramanujan's theta functions we reveal some connections between $t(a,b,c;n)$ and $N(a,b,c;n)$.", "revisions": [ { "version": "v1", "updated": "2016-01-24T13:00:25.000Z" } ], "analyses": { "subjects": [ "30B10", "33E20", "11D85", "11E25" ], "keywords": [ "ternary quadratic forms", "linear combination", "triangular numbers", "ramanujans theta functions", "representations" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160106378S" } } }