{ "id": "1601.06211", "version": "v1", "published": "2016-01-23T00:28:14.000Z", "updated": "2016-01-23T00:28:14.000Z", "title": "Multigraded Apolarity", "authors": [ "Maciej Gałązka" ], "comment": "27 pages", "categories": [ "math.AG" ], "abstract": "We generalize methods to compute various kinds of rank to the case of a toric variety $X$ embedded into projective space using a very ample line bundle $\\mathcal{L}$. We use this to compute rank, border rank, and cactus rank of monomials in $H^0(X, \\mathcal{L})^*$ when $X$ is the Hirzebruch surface $\\mathbb{F}_1$, the weighted projective plane $\\mathbb{P}(1,1,4)$, or a fake projective plane.", "revisions": [ { "version": "v1", "updated": "2016-01-23T00:28:14.000Z" } ], "analyses": { "subjects": [ "14M25", "14N15" ], "keywords": [ "multigraded apolarity", "ample line bundle", "cactus rank", "border rank", "toric variety" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160106211G" } } }