{ "id": "1601.05701", "version": "v1", "published": "2016-01-21T16:31:05.000Z", "updated": "2016-01-21T16:31:05.000Z", "title": "A Drinfeld presentation for the twisted Yangian $Y_3^+$", "authors": [ "Jonathan S Brown" ], "comment": "34 pages", "categories": [ "math.RT", "math.QA", "math.RA" ], "abstract": "We define the Drinfeld generators for $Y_3^+$, the twisted Yangian associated to the Lie algebra $\\mathfrak{so}_3(\\mathbb{C})$. This allows us to define shifted twisted Yangians, which are certain subalgebras of $Y_3^+$. We show that there are families of homomorphisms from the shifted twisted Yangians in $Y_3^+$ to the universal enveloping algebras of various orthogonal and symplectic Lie algebras, and we conjecture that the images of these homomorphisms are isomorphic to various finite $W$-algebras.", "revisions": [ { "version": "v1", "updated": "2016-01-21T16:31:05.000Z" } ], "analyses": { "subjects": [ "17B10" ], "keywords": [ "drinfeld presentation", "symplectic lie algebras", "define shifted twisted yangians", "drinfeld generators", "homomorphisms" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160105701B" } } }