{ "id": "1601.05320", "version": "v1", "published": "2016-01-20T16:26:40.000Z", "updated": "2016-01-20T16:26:40.000Z", "title": "Inverse Problems For Dirac Operators With a Finite Number of Transmission Conditions", "authors": [ "Yalçın Güldü", "Merve Arslantaş" ], "comment": "arXiv admin note: text overlap with arXiv:1409.3732", "categories": [ "math.CA" ], "abstract": "In this paper, we consider a discontinuous Dirac operator depending polynomially on the spectral parameter and a finite number of transmission conditions. We get some properties of eigenvalues and eigenfunctions. Then, we investigate some uniqueness theorems by using Weyl function and some spectral data.", "revisions": [ { "version": "v1", "updated": "2016-01-20T16:26:40.000Z" } ], "analyses": { "keywords": [ "finite number", "transmission conditions", "inverse problems", "discontinuous dirac operator", "spectral parameter" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }