{ "id": "1601.03988", "version": "v1", "published": "2016-01-15T16:28:11.000Z", "updated": "2016-01-15T16:28:11.000Z", "title": "On syzygies over 2-Calabi-Yau tilted algebras", "authors": [ "Ana Garcia Elsener", "Ralf Schiffler" ], "comment": "22 pages, 18 figures", "categories": [ "math.RT", "math.RA" ], "abstract": "We characterize the syzygies and co-syzygies over 2-Calabi-Yau tilted algebras in terms of the Auslander-Reiten translation and the syzygy functor. We explore connections between the category of syzygies, the category of Cohen-Macaulay modules, the representation dimension of algebras and the Igusa-Todorov functions. In particular, we prove that the Igusa-Todorov dimensions of d-Gorenstein algebras are equal to d. For cluster-tilted algebras of Dynkin type D, we give a geometric description of the stable Cohen-Macaulay category in terms of tagged arcs in the punctured disc. We also describe the action of the syzygy functor in a geometric way. This description allows us to compute the Auslander-Reiten quiver of the stable Cohen-Macaulay category using tagged arcs and geometric moves.", "revisions": [ { "version": "v1", "updated": "2016-01-15T16:28:11.000Z" } ], "analyses": { "subjects": [ "16G50", "16G70", "13F60" ], "keywords": [ "tilted algebras", "stable cohen-macaulay category", "syzygy functor", "tagged arcs", "cohen-macaulay modules" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160103988G" } } }