{ "id": "1601.03321", "version": "v1", "published": "2016-01-13T17:26:53.000Z", "updated": "2016-01-13T17:26:53.000Z", "title": "Scaling limits of discrete copulas are bridged Brownian sheets", "authors": [ "Juliana Freire", "Nicolau C. Saldanha", "Carlos Tomei" ], "comment": "29 pages, 5 figures", "categories": [ "math.PR", "math.CO" ], "abstract": "For large $n$, take a random $n \\times n$ permutation matrix and its associated discrete copula $X_n$. For $a, b = 0, 1, \\ldots, n$, let $y_n(\\frac{a}{n},\\frac{b}{n}) = \\frac{1}{n} ( X_{a,b} - \\frac{ab}{n} )$; define $y_n: [0,1]^2 \\to R$ by interpolating quadratically on squares of side $\\frac{1}{n}$. We prove a Donsker type central limit theorem: $\\sqrt{n} y_n$ approaches a bridged Brownian sheet on the unit square.", "revisions": [ { "version": "v1", "updated": "2016-01-13T17:26:53.000Z" } ], "analyses": { "subjects": [ "60C05", "60F05", "60J65", "60B20" ], "keywords": [ "bridged brownian sheet", "scaling limits", "donsker type central limit theorem", "permutation matrix", "associated discrete copula" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160103321F" } } }