{ "id": "1601.03183", "version": "v1", "published": "2016-01-13T09:45:10.000Z", "updated": "2016-01-13T09:45:10.000Z", "title": "The essential spectrum of the Neumann--Poincaré operator on a domain with corners", "authors": [ "Karl-Mikael Perfekt", "Mihai Putinar" ], "categories": [ "math.FA", "math.SP" ], "abstract": "Exploiting the homogeneous structure of a wedge in the complex plane, we compute the spectrum of the anti-linear Ahlfors--Beurling transform acting on the Bergman space of the wedge. A classical similarity equivalence between the Ahlfors--Beurling transform and the Neumann--Poincar\\'e operator then characterizes the spectrum also of the latter on a wedge. A localization technique leads to a complete description of the essential spectrum of the Neumann--Poincar\\'e operator on a planar domain with corners.", "revisions": [ { "version": "v1", "updated": "2016-01-13T09:45:10.000Z" } ], "analyses": { "keywords": [ "essential spectrum", "neumann-poincare operator", "complete description", "complex plane", "classical similarity equivalence" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160103183P" } } }