{ "id": "1601.03167", "version": "v1", "published": "2016-01-13T08:32:38.000Z", "updated": "2016-01-13T08:32:38.000Z", "title": "Pick Functions Related to the Multiple Gamma Functions of order $n$", "authors": [ "Sourav Das", "A. Swaminathan" ], "comment": "14 pages", "categories": [ "math.CA" ], "abstract": "Let $G_n$ be the Barnes multiple Gamma function of order $n$ and the function $f_n(z)$ be defined as \\begin{align*} f_n(z)=\\dfrac{\\log G_n(z+1)}{z^n\\Log z},\\quad z\\in \\mathbb{C}\\setminus (-\\infty,0]. \\end{align*} In this work, a conjecture to find the Stieltjes representation is proposed such that $f_n(z)$ is a Pick function. The conjecture is established for the particular case $n=3$ by examining the properties of $f_3(z)$.", "revisions": [ { "version": "v1", "updated": "2016-01-13T08:32:38.000Z" } ], "analyses": { "subjects": [ "33B15", "41A60" ], "keywords": [ "pick function", "barnes multiple gamma function", "conjecture", "stieltjes representation" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160103167D" } } }