{ "id": "1601.02992", "version": "v1", "published": "2016-01-12T18:36:13.000Z", "updated": "2016-01-12T18:36:13.000Z", "title": "Zero sets of Abelian Lie algebras of vector fields", "authors": [ "Morris W. Hirsch" ], "comment": "8 pages", "categories": [ "math.DS" ], "abstract": "Assume M is a 3-dimensional real manifold without boundary, A is an abelian Lie algebra of analytic vector fields on M, and X is an element of A. The following result is proved: If K is a locally maximal compact set of zeroes of X and the Poincar'e-Hopf index of X at K is nonzero, there is a point in K at which all the elements of A vanish.", "revisions": [ { "version": "v1", "updated": "2016-01-12T18:36:13.000Z" } ], "analyses": { "subjects": [ "17B66", "37B30", "58K45" ], "keywords": [ "abelian lie algebra", "zero sets", "analytic vector fields", "locally maximal compact set", "poincare-hopf index" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }