{ "id": "1601.02925", "version": "v1", "published": "2016-01-12T15:49:25.000Z", "updated": "2016-01-12T15:49:25.000Z", "title": "Sharp Poincaré-type inequality for the Gaussian measure on the boundary of convex sets", "authors": [ "Alexander V. Kolesnikov", "Emanuel Milman" ], "comment": "13 pages", "categories": [ "math.FA", "math.PR" ], "abstract": "A sharp Poincar\\'e-type inequality is derived for the restriction of the Gaussian measure on the boundary of a convex set. In particular, it implies a Gaussian mean-curvature inequality and a Gaussian iso second-variation inequality. The new inequality is nothing but an infinitesimal form of Ehrhard's inequality for the Gaussian measure.", "revisions": [ { "version": "v1", "updated": "2016-01-12T15:49:25.000Z" } ], "analyses": { "keywords": [ "gaussian measure", "sharp poincaré-type inequality", "convex set", "gaussian iso second-variation inequality", "sharp poincare-type inequality" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160102925K" } } }