{ "id": "1601.02840", "version": "v1", "published": "2016-01-12T13:06:02.000Z", "updated": "2016-01-12T13:06:02.000Z", "title": "The Gradient Flow of O'Hara's Knot Energies", "authors": [ "Simon Blatt" ], "comment": "45 pages", "categories": [ "math.AP" ], "abstract": "Jun O'Hara invented a family of knot energies $E^{j,p}$, $j,p \\in (0, \\infty)$. We study the negative gradient flow of the sum of one of the energies $E^\\alpha = E^{\\alpha,1}$, $\\alpha \\in (2,3)$, and a positive multiple of the length. Showing that the gradients of these knot energies can be written as the normal part of a quasilinear operator, we derive short time existence results for these flows. We then prove long time existence and convergence to critical points.", "revisions": [ { "version": "v1", "updated": "2016-01-12T13:06:02.000Z" } ], "analyses": { "subjects": [ "53C44", "35S10" ], "keywords": [ "oharas knot energies", "derive short time existence results", "long time existence", "quasilinear operator", "normal part" ], "note": { "typesetting": "TeX", "pages": 45, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160102840B" } } }