{ "id": "1601.02526", "version": "v1", "published": "2016-01-11T17:23:59.000Z", "updated": "2016-01-11T17:23:59.000Z", "title": "Quantum variance on quaternion algebras, I", "authors": [ "Paul D. Nelson" ], "comment": "36 pages", "categories": [ "math.NT", "math.DS" ], "abstract": "We determine the quantum variance of a sequence of families of automorphic forms on a compact quotient arising from a non-split quaternion algebra. Our results compare to those obtained by Luo--Sarnak, Zhao, and Sarnak--Zhao on the modular curve, whose method required a cusp. Our method uses the theta correspondence to reduce the problem to the estimation of metaplectic Rankin--Selberg convolutions. We illustrate it here in the simplest non-trivial non-split case.", "revisions": [ { "version": "v1", "updated": "2016-01-11T17:23:59.000Z" } ], "analyses": { "subjects": [ "11F27", "11F37", "58J51" ], "keywords": [ "quantum variance", "simplest non-trivial non-split case", "non-split quaternion algebra", "metaplectic rankin-selberg convolutions", "theta correspondence" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160102526N" } } }