{ "id": "1601.02408", "version": "v1", "published": "2016-01-11T11:34:04.000Z", "updated": "2016-01-11T11:34:04.000Z", "title": "On the existence of primitive pencils for smooth curves", "authors": [ "E. Ballico" ], "categories": [ "math.AG" ], "abstract": "Let $C$ be a smooth curve with gonality $k\\ge 6$ and genus $g\\ge 2k^2+5k-6$. We prove that $W^1_d({C})$ has the expected dimension and that the general element of any irreducible component of $W^1_d({C})$ is primitive if either $g-k+4\\le d\\le g-2$ or $d=g-k+3$ and either $k$ is odd or $C$ is not a double covering of a curve of gonality $k/2$ and genus $k-3$. Even in the latter case we prove the existence of a complete and primitive $g^1_{g-k+3}$.", "revisions": [ { "version": "v1", "updated": "2016-01-11T11:34:04.000Z" } ], "analyses": { "subjects": [ "14H51" ], "keywords": [ "smooth curve", "primitive pencils", "general element", "irreducible component" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160102408B" } } }