{ "id": "1601.02373", "version": "v1", "published": "2016-01-11T09:49:21.000Z", "updated": "2016-01-11T09:49:21.000Z", "title": "On the divisibility by $p$ of the number of $F_{p}$-points of a variety", "authors": [ "Lucile Devin" ], "comment": "20 pages", "categories": [ "math.NT" ], "abstract": "Let $X$ be an affine scheme of finite type over $\\mathbf{Z}$, we study the set $\\lbrace p\\in\\mathcal{P}, p\\nmid N_{X}(p)\\rbrace$ where $N_{X}(p)$ is the number of $\\mathbf{F}_{p}$-points of $X/\\mathbf{F}_{p}$. We prove a simple condition for the set to have positive lower-density in case $\\dim X\\leq 3$. Then we study the size of the smallest element of the set. We use sieve methods to bound the size of the least prime of $\\lbrace p\\in\\mathcal{P}, p\\nmid N_{X}(p)\\rbrace$ on average in particular families of hyperelliptic curves.", "revisions": [ { "version": "v1", "updated": "2016-01-11T09:49:21.000Z" } ], "analyses": { "subjects": [ "11R45", "11G25", "11N36" ], "keywords": [ "divisibility", "finite type", "simple condition", "affine scheme", "smallest element" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160102373D" } } }