{ "id": "1601.02325", "version": "v1", "published": "2016-01-11T05:26:54.000Z", "updated": "2016-01-11T05:26:54.000Z", "title": "Regularity of Weak Solutions of Elliptic and Parabolic Equations with Some Critical or Supercritical Potentials", "authors": [ "Zijin Li", "Qi S. Zhang" ], "comment": "32 pages", "categories": [ "math.AP" ], "abstract": "We prove H\\\"older continuity of weak solutions of the uniformly elliptic and parabolic equations %$\\Delta u-\\frac{A}{|x|^{2+\\beta}}u=0,\\,\\,(\\beta\\geq 0)$, and variable second order term coefficients case $%% \\begin{equation}\\label{01} \\partial_{i} (a_{ij}(x) \\partial_{j}u(x)) - \\frac{A}{|x|^{2+\\beta}} u(x) =0\\quad (A>0,\\quad\\beta\\geq 0), \\end{equation} \\begin{equation}\\label{02} \\partial_{i} (a_{ij}(x,t) \\partial_{j}u(x,t)) - \\frac{A}{|x|^{2+\\beta}} u(x,t)-\\partial_{t}u(x,t) =0\\quad (A>0,\\quad\\beta\\geq 0), \\end{equation} with critical or supercritical 0-order term coefficients which are beyond De Giorgi-Nash-Moser's Theory. We also prove, in some special cases, weak solutions are even differentiable. Previously P. Baras and J. A. Goldstein \\cite{Baras1984} treated the case when $A<0$, $(a_{ij})=I$ and $\\beta=0$ for which they show that there does not exist any regular positive solution or singular positive solutions, depending on the size of $|A|$. When $A>0$, $\\beta=0$ and $(a_{ij})=I$, P. D. Milman and Y. A. Semenov \\cite{Milman2003}\\cite{Milman2004} obtain bounds for the heat kernel.", "revisions": [ { "version": "v1", "updated": "2016-01-11T05:26:54.000Z" } ], "analyses": { "subjects": [ "35D30", "35J15", "35K10" ], "keywords": [ "parabolic equations", "weak solutions", "supercritical potentials", "second order term coefficients case", "regularity" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160102325L" } } }