{ "id": "1601.02251", "version": "v1", "published": "2016-01-10T18:56:42.000Z", "updated": "2016-01-10T18:56:42.000Z", "title": "On rigidity of factorial trinomial hypersurfaces", "authors": [ "Ivan Arzhantsev" ], "comment": "7 pages", "categories": [ "math.AG" ], "abstract": "An affine algebraic variety $X$ is rigid if the algebra of regular functions ${\\mathbb K}[X]$ admits no nonzero locally nilpotent derivation. We prove that a factorial trinomial hypersurface is rigid if and only if every exponent in the trinomial is at least 2.", "revisions": [ { "version": "v1", "updated": "2016-01-10T18:56:42.000Z" } ], "analyses": { "subjects": [ "13A50", "14R20", "14J50", "14L30", "14M25" ], "keywords": [ "factorial trinomial hypersurface", "nonzero locally nilpotent derivation", "affine algebraic variety", "regular functions" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160102251A" } } }