{ "id": "1601.02239", "version": "v1", "published": "2016-01-10T17:45:45.000Z", "updated": "2016-01-10T17:45:45.000Z", "title": "On minimax theorems for lower semicontinuous functions in Hilbert spaces", "authors": [ "Ewa M. Bednarczuk", "Monika Syga" ], "comment": "13 pages", "categories": [ "math.OC" ], "abstract": "We prove minimax theorems for lower semicontinuous functions defined on a Hilbert space. The main tool is the theory of $\\Phi$-convex functions and sufficient and necessary conditions for the minimax equality to hold for $\\Phi$-convex functions. These conditions are expressed in terms of abstract $\\Phi$-subgradients.", "revisions": [ { "version": "v1", "updated": "2016-01-10T17:45:45.000Z" } ], "analyses": { "subjects": [ "32F17", "49J52", "49K27", "49K35", "52A01" ], "keywords": [ "lower semicontinuous functions", "hilbert space", "minimax theorems", "convex functions", "main tool" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160102239B" } } }