{ "id": "1601.02202", "version": "v1", "published": "2016-01-10T11:52:40.000Z", "updated": "2016-01-10T11:52:40.000Z", "title": "Limit theorems related to beta-expansion and continued fraction expansion", "authors": [ "Lulu Fang", "Min Wu", "Bing Li" ], "comment": "20 pages", "categories": [ "math.NT", "math.PR" ], "abstract": "Let $\\beta > 1$ be a real number and $x \\in [0,1)$ be an irrational number. Denote by $k_n(x)$ the exact number of partial quotients in the continued fraction expansion of $x$ given by the first $n$ digits in the $\\beta$-expansion of $x$ ($n \\in \\mathbb{N}$). In this paper, we show a central limit theorem and a law of the iterated logarithm for the random variables sequence $\\{k_n, n \\geq 1\\}$, which generalize the results of Faivre and Wu respectively from $\\beta =10$ to any $\\beta >1$.", "revisions": [ { "version": "v1", "updated": "2016-01-10T11:52:40.000Z" } ], "analyses": { "keywords": [ "continued fraction expansion", "beta-expansion", "central limit theorem", "random variables sequence", "irrational number" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160102202F" } } }