{ "id": "1601.02192", "version": "v1", "published": "2016-01-10T09:37:28.000Z", "updated": "2016-01-10T09:37:28.000Z", "title": "Some results associated with Bernoulli and Euler numbers with applications", "authors": [ "C. -P. Chen", "R. B. Paris" ], "comment": "15 pages, 0 figures", "categories": [ "math.CA" ], "abstract": "In this paper, we present series representations of the remainders in the expansions for $2/(e^t+1)$, $\\mbox{sech} t$ and $\\coth t$. For example, we prove that for $t > 0$ and $N\\in\\mathbb{N}:=\\{1, 2, \\ldots\\}$, \\[\\mbox{sech}\\, t=\\sum_{j=0}^{N-1}\\frac{E_{2j}}{(2j)!}t^{2j}+R_N(t) \\] with \\[ R_N(t)=\\frac{(-1)^{N}2t^{2N}}{\\pi^{2N-1}}\\sum_{k=0}^{\\infty}\\frac{(-1)^{k}}{(k+\\frac{1}{2})^{2N-1}\\Big(t^2+\\pi^2(k+\\frac{1}{2})^2\\Big)}, \\] and \\[\\mbox{sech}\\, t=\\sum_{j=0}^{N-1}\\frac{E_{2j}}{(2j)!}t^{2j}+\\Theta(t, N)\\frac{E_{2N}}{(2N)!}t^{2N} \\] with a suitable $0 < \\Theta(t, N) < 1$. Here $E_n$ are the Euler numbers. By using the obtained results, we deduce some inequalities and completely monotonic functions associated with the ratio of gamma functions. Furthermore, we give a (presumably new) quadratic recurrence relation for the Bernoulli numbers.", "revisions": [ { "version": "v1", "updated": "2016-01-10T09:37:28.000Z" } ], "analyses": { "subjects": [ "11B58", "26A48", "26D15" ], "keywords": [ "euler numbers", "applications", "quadratic recurrence relation", "bernoulli numbers", "series representations" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160102192C" } } }