{ "id": "1601.01937", "version": "v1", "published": "2016-01-08T16:46:06.000Z", "updated": "2016-01-08T16:46:06.000Z", "title": "Exponential convergence to the equilibrium for a class of 1D Lagrangian systems with random forcing", "authors": [ "Alexandre Boritchev" ], "categories": [ "math.DS" ], "abstract": "We prove exponential convergence to the stationary measure for a class of 1d Lagrangian systems with random forcing in the space-periodic setting: $\\phi_t+\\phi_x^2/2=F^{\\omega}, x \\in S^1 = \\mathbb{R}/\\mathbb{Z}$. Thus, we solve a conjecture formulated in \\cite{GIKP05}. Our result is a consequence (and the natural stochastic PDE counterpart) of the results obtained in \\cite{BK13, EKMS00}. It is also the natural analogue of the corresponding generic deterministic result \\cite{ISM09}.", "revisions": [ { "version": "v1", "updated": "2016-01-08T16:46:06.000Z" } ], "analyses": { "keywords": [ "1d lagrangian systems", "exponential convergence", "random forcing", "equilibrium", "natural stochastic pde counterpart" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160101937B" } } }